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A B S T R A C T

The TiO2-mediated photocatalysis process has been successfully used for degrading dye pollutants

during past decades. However, the dye degradation efficiency has been proposed to rely only on the

concentration of oxygen molecules (through photooxidation pathway). In our current study, the dye

ethyl violet (EV) degradation process is prepared under an anaerobic condition. Most interestingly, both

photocatalytic reduction and photocatalytic oxidation intermediates are isolated and identified at the

first time. Photoreduction intermediates such as benzene, toluene, ethylbenzene, and xylene (BTEX),

ethane, and diethylamine are detected by Headspace-GC–MS. Moreover, 18 photodegraded

intermediates are also identified and characterized through HPLC–PDA–ESI-MS. The results demonstrate

that a novel photodegradation mechanism should be proposed via three competition pathways,

including (i) the cleavage of the whole conjugated chromophore structure by photocatalytic reduction,

(ii) the cleavage of the whole conjugated chromophore structure by photocatalytic oxidation, and (iii) N-

de-ethylation of the chromophore skeleton.

� 2014 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Photocatalytic oxidation (PCO) of wastewater containing toxic
organic compounds using TiO2 has been extensively studied in
recent years [1–11]. The TiO2-mediated photocatalysis process
has been successfully used for degrading dye pollutants during
past decades [11,12]. However, the dye degradation efficiency
has been proposed to rely only on the concentration of oxygen
molecules (through photooxidation pathway). The ultimate
objective of PCO is to convert the organic substrates to H2O
and CO2. Photocatalytic reduction of CO2 to formaldehyde, formic
acid, methanol, and methane as the main products over
semiconductor particles was demonstrated three decades ago
[13,14]. H2 production by semiconductor photocatalysts such as
TiO2 has attracted much attention. It represents a promising
technology to use renewable resources for clean and environ-
mentally friendly energy production [15–18]. Recently, with
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increasing concerns about climate change and the depletion
of fossil fuels, there has been a revived interest in the production
of H2 by photocatalytic decomposition of organic substances
[19–21]. These substances include biomass and its derivatives
[22–25], such as cellulose, starch, sucrose, glucose, and glycerol,
alcohols such as methanol, ethanol and C3-polyols [26,27]. The
reaction condition is almost the same as that of PCO but without
bubbling O2 or air to suppress the thermal back-reaction of H2

with O2. H2O, instead of O2, is used as an oxidant for splitting
organic compounds to H2 and CO2. The H2 evolution rate is
generally much higher than that of splitting pure water because
of the presence of organic substances. As the process is analogous
to the catalytic thermal reforming process, it is commonly called
photocatalytic reforming (PR) reaction. Obviously, the reaction
not only involves in the decomposition and mineralization of
organic substrates, but also involves in the splitting of water to
produce H2. PR of C3-polyols and glucose for H2 production over
noble-metal-loaded TiO2 was investigated by Wang et al. [27,28].

Hydrocarbon fuels are currently the most important source of
energy due to their ready availability, stability, and high energy
density [29]. An alternative to the traditional anaerobic digestion
method of biogas production could generate methane and other
All rights reserved.
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useful hydrocarbons via photocatalytic reduction (PCR) [13,30–
32]. Photocatalytic reduction of CO2 to formaldehyde, formic acid,
methanol, and methane as the main products over semiconductor
particles was demonstrated three decades ago [13,33]. The
photocatalytic generation of C1–C3 hydrocarbons and hydrogen
from the aqueous solution of acetic acid over TiO2 was investigated
by Mozia et al. [34]. Acetic acid underwent the photo-Kolbe
reaction yielding CH4 and CO2. Yuan et al. reported [35] that the
findings were valuable not only in the molecular-level under-
standing of photocatalytic reactions over TiO2-based photocata-
lysts, but also in the development of a green and benign
photocatalytic route for the synthesis of esters directly from
alcohols or from alcohols and aldehydes. Therefore, the gaseous
mixture obtained during the photocatalytic reaction had a similar
composition to that of biogas produced by a conventional
anaerobic digestion method.

Dimitrijevic et al. [13] proposed that the water, both dissociated
on the surface of TiO2 and in subsequent molecular layers, had a
threefold role of (i) stabilization of charges (preventing electron–
hole recombination), (ii) an electron donor (reaction of water with
photogenerated holes to give OH radicals), and (iii) an electron
acceptor (formation of H atoms in a reaction of photogenerated
electrons with protons on the surface, –OH2

+).
Photocatalytic oxidation of EV for TiO2 was investigated in our

former work [36]. In this current study, the ethyl violet (EV) dye
degradation process is prepared under an anaerobic condition to
mimic the photo-Kolbe reaction. Most interestingly, both photo-
catalytic reduction and photocatalytic oxidation intermediates are
isolated and identified at the first time under the anaerobic
condition. Photoreduction intermediates such as benzene, toluene,
ethylbenzene, and xylene (BTEX), ethane, and diethylamine are
detected by Headspace-GC–MS. The photocatalytic reduction and
reforming seem playing an important role in the generation of
BTEX. Moreover, 18 photooxidation intermediates are also
identified and characterized through HPLC–PDA–ESI-MS. Accord-
ing to the results, a possible mechanism for the process is
suggested and discussed.

2. Experiment

2.1. Materials and reagents

The P25 TiO2 nanoparticles were supplied by Degussa.
Standards of the following compounds were used as standard
compounds, including benzene (99%), toluene (99%), o-xylene
(99%), m-xylene (99%), p-xylene (99%), and ethylbenzene (99%)
from Acros. 4-Aminophenol (AP; analytical standard) was
purchased from Riedel-de Haen. The 4-(N,N-diethylamino)-40-
(N0,N0-diethylamino)benzophenone (DDBP) was obtained from
Tokyo Kasei Kogyo Co. The stock solutions of these compounds
were prepared separately at a concentration of 2 mg/mL in
methanol. These stock standard solutions were diluted with
methanol weekly to prepare a mixed stock solution with a
concentration of 0.1 mg/mL for each compound. The standard
solution containing the required amount of each analyte
(0.5–200 ng/mL) was prepared daily by diluting the mixed
standard solution with double distilled water to study the
extraction performance under different conditions. Stock and
working standards were stored at 4 8C. 1,4-Difluorobenzene
(Merck), and EV dye (TCI) were obtained and used without any
further purification.

2.2. Instruments and analytic methods

FE-SEM–EDS measurements were carried out with a field-
emission microscope (JEOL JSM-7401F) at an acceleration
voltage of 15 kV. The BET specific surface areas of the
samples were measured with an automatic system (Micromeritics
Gemini 237 8C) using nitrogen gas as the adsorbate, at liquid
nitrogen temperature. Electron paramagnetic resonance signals
were recorded with a Bruker EMX-10/12.

The Headspace-GC–MS system was equipped with an
AutoSystem XL Gas Chromatograph, a PerkinElmer TurboMass
Gold Mass Spectrometer, and Turbomatrix 40 Headspace
Samplers. Under nitrogen condition, 20-mL Headspace-GC
vials were filled with 10-mL aliquots of 10 ppm EV with 1 mg
of TiO2 powder and sealed with gas-tight polytetrafluoroethy-
lene (PTFE)-lined rubber septum caps after acidification or
alkalization. Each sample was heated for the same period of
time at the same temperature in the pre-heating module.
The tested prewarm temperatures were 70 and 80 8C with
prewarm time 2, 5, 7, 10 and 30 min for the highest
sensitivity and reproducibility of the headspace analysis. The
photodegradated intermediates in the vapor were partitioned
between the liquid and the gaseous phase. The gaseous
phase was transferred into the column. The separation was
carried out in a DB-5 capillary column (5% diphenyl/95%
dimethyl-siloxane), 60 m, 0.25-mm i.d., and 1.0-mm thick film.
A split–splitless injector was used under the conditions of
injection volume 10 mL, injector temperature 280 8C, and
split flow 10 mL/min. The helium carrier gas flow was 1 mL/
min. The oven temperature program was 4.0 min at 40 8C, 4 8C/
min to 80 8C (2 min), and 8 8C/min to 280 8C (9 min). Typical
MSD operating conditions were optimized by the autotuning
software. Electron impact (EI) mass spectra were monitored
from 35 to 300 m/z. The ion source and inlet line temperatures
were set at 220 8C and 280 8C, respectively.

Waters ZQ LC/MS system was used for identifying the reaction
intermediates. After each irradiation cycle, the amount of
residual dye was thus determined by HPLC. The analyses of
organic intermediates were accomplished by HPLC–ESI-MS
after readjusting chromatographic conditions in order to
make the mobile phase compatible with the working conditions
of the mass spectrometer. Solvent A was 25 mM aqueous
ammonium acetate buffer (pH 6.9), and solvent B was methanol.
LC was carried out on an AtlantisTM dC18 column
(250 mm � 4.6 mm i.d., dp = 5 mm). The mobile phase flow
rate was 1.0 mL/min. A linear gradient was run as t = 0, A = 95,
B = 5; t = 20, A = 50, B = 50; t = 35–40, A = 10, B = 90; t = 45, A = 95,
B = 5. The column effluent was introduced into the ESI source of the
mass spectrometer. The quadruple mass spectrometer, equipped
with an ESI interface with heated nebulizer probe at 350 8C, was
used with an ion source temperature of 80 8C. ESI was carried out
with the vaporizer at 350 8C, and nitrogen was used as sheath
(80 psi) and auxiliary (20 psi) gas to assist in the preliminary
nebulization and to initiate the ionization process. A discharge
current of 5 A was applied. Tube lens and capillary voltages were
optimized for the maximum response during the perfusion of the
EV standard.

The formation of hydroxyl radicals (�OH) in the TiO2

system was detected by the fluorescence technique using
coumarin as a probe molecule. The experimental procedures
were similar to those used in the measurement of
photocatalytic activities except that the aqueous solution of
EV was replaced by an aqueous solution of 1 � 10�3 M coumarin.
The UV light irradiation was continuous and the sampling
was performed every 2 h for analyses. The solution was
analyzed after the filtration on a Shimadzu RF-5301PC fluores-
cence spectrophotometer. The product of the coumarin hy-
droxylation, 7-hydroxycoumarin (7HC), gave a peak at a
wavelength of about 456 nm by excitation with a wavelength
of 332 nm.



Fig. 1. UV–vis spectra change of EV in aqueous TiO2 dispersions (EV: 10 mg/L, TiO2:

10 mg/L) as a function of irradiation time. Spectra from top to bottom correspond to

the irradiation time of 4 h, 8 h, 12 h, 16 h, and 20 h, respectively.

Fig. 2. Variation in the relative distribution of the products obtained at gas phase

from the photocatalytic reduction of EV as a function of irradiation time.
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2.3. Photocatalytic reaction

Under nitrogen condition, 20-mL Headspace-GC vials were
filled with 10-mL aliquots of 10 ppm EV with 1 mg TiO2 powder
and sealed with gas-tight polytetrafluoroethylene (PTFE)-lined
rubber septum caps after acidification or alkalization. Irradiations
were carried out using two UV-365 nm lamps (20 W). An average
irradiation intensity of 5.8 W/m2 was maintained throughout the
experiments and was measured by the internal radiometer. The
results obtained were more likely different from that of PCO of EV
over TiO2 under a N2 condition, i.e., O2 free condition. Therefore, it
was essential to conduct a separate GC–MS and HPLC–MS
measurement to study the photodegraded mechanism.

3. Results and discussion

3.1. Characterization of P25-TiO2

Titanium dioxide (P25) – a known mixture of 80% anatase
and 20% rutile, with an average particle size of 30 nm, nonporous,
and with a reactive surface area of 50 � 10 m2/g – was used as
received for all degradation experiments and supplied by Degussa Co.
The surface morphologies of the P25-TiO2 powder were examined
with FE-SEM-EDS, and the results demonstrated a highly uniform
dispersion in Fig. S1 of Supplementary materials. The EDS results
showed that the main elements of these samples were titanium and
oxygen. In addition, the BET specific surface area and pore volume of
the TiO2-powder material showed 55.42 m2/g and 0.018 cm2/g for
Degussa P25. UV–vis diffuse reflectance spectra of different catalysts
are shown in Fig. S2 of Supplementary materials. The observed results
of the P25-TiO2 diffuse reflection spectra showed obvious absorption
in the visible light region up to about 425 nm. Eg of P25-TiO2 was
determined from a plot of (ahy) vs energy (hy) in Fig. S2 (inset) of
Supplementary materials and elicited to be 3.07 eV, indicating
that the P25-TiO2 had a band gap suitable for the photocatalytic
degradation of organic contaminants under UV-light irradiation
[37,38].

Supplementary figure related to this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.jtice.2014.04.025.

Supplementary figure related to this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.jtice.2014.04.025.

3.2. UV–visible spectra

The aqueous solution of the EV dye was a little unstable under
UV irradiation in the absence of TiO2. However, the EV dye could be
degraded efficiently in aqueous EV/TiO2 dispersions by UV light
irradiation at 365 nm under an anaerobic condition. After the
irradiation for 20 h, ca. 99.9% of the EV dye was degraded in Fig. 1.
During UV irradiation, the characteristic absorption band of the
dye around 593.0 nm decreased rapidly with a slight hypsochro-
mic shift (579.8 nm), but no new absorption band appeared even in
the ultraviolet range (200 nm < l <400 nm), indicating the
possible formation of a series of N-de-ethylated intermediates,
cleavage of the whole conjugated chromophore structure of the EV
dye, and degradation of the phenylic skeleton. Similar phenomena
were also observed during the TiO2-mediated photodegradation of
ethyl violet [12] and crystal violet [39] under visible irradiation.

3.3. GC–MS analysis

It is still impossible to real-time investigate the PR process of
these systems in situ. A relatively feasible way at present was to use
GC–MS and HPLC–MS for identifying both the PCO and PCR
intermediates (both liquid- and gas-phase intermediates) although
the reaction conditions were not exactly the real reforming
reaction. The intermediates were marked in the GC chromato-
grams (Fig. 2) and the relevant mass spectra are illustrated in
Table 1. Up to six compounds could be detected as possible
degradation intermediates in Fig. 2.

The intermediates were marked in the GC–MS/EI chromato-
gram (Fig. 2). Table 1 presents the fragmentation patterns of the
intermediates (I–VI) and the corresponding compounds identified
by the interpretation of their MS spectra. The peaks eluting at
31.91, 30.39, 29.96, 24.57, and 18.35 min during GC–MS were
identified as o-xylene, m-, p-xylene, ethylbenzene, toluene, and
benzene with fit values of 91%, 87%, 89%, 90%, and 95%,
respectively, found by searching the mass spectra library. Further
oxidation of organic substrates containing nitrogen to nitrate could
be obtained by increasing irradiation time.

3.4. HPLC–PDA–ESI-MS analysis

Temporal variations occurring in the solution of EV dye during
the degradation process with UV irradiation were examined using
HPLC coupled with a photodiode array detector and ESI mass
spectrometry. The chromatograms at pH 6 are illustrated in Fig. 3,
recorded at 580, 350, and 300 nm. Eighteen components were

http://dx.doi.org/10.1016/j.jtice.2014.04.025
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Table 1
Identification of the intermediates from the photodegradation of EV by HPLC–ESI-MS or GC–EI-MS.

HPLC peaks Intermediates Abbreviation MS peaks (m/z) Absorption

maximum (nm)

A N,N,N0 ,N0 ,N00 ,N00-Hexaethylpararosaniline EV 456.51 592.2

B N,N-Diethyl-N0 ,N0-diethyl-N00-ethylpararosaniline DDEPR 428.48 584.9

C N,N-Diethyl-N0-ethyl-N00-ethylpararosaniline DEEPR 400.46 583.6

D N,N-Diethyl-N0 ,N0-diethylpararosaniline DDPR 400.52 584.4

E N-Ethyl-N0-ethyl-N00-ethyl pararosaniline EEEPR 372.44 580.5

F N,N-Diethyl-N0-ethylpararosaniline DEPR 372.37 581.5

G N-Ethy-N0-ethylpararosaniline EEPR 344.41 570.2

H N,N-Diethylpararosaniline DPR 344.41 570.5

I N-Ethylpararosaniline EPR 316.39 544.5

a 4-(N,N-Diethylamino)-40-(N0,N0-diethylamino) benzophenone DDBP 325.41 379.5

b 4-(N,N-Diethylamino)-40-(N0-ethylamino)benzophenone DEBP 297.38 373.1

c 4-(N-Ethylamino)-40-(N0-ethylamino)benzophenone EEBP 269.29 365.5

d 4-(N,N-Diethylamino)-40-aminobenzophenone DBP 269.29 372.1

e 4-(N-Ethylamino)-40-aminobenzophenone EBP 241.33 357.2

f 4,40-Bis-aminobenzophenone BP 213.17 344.2

a 4-(N,N-Diethylamino)phenol DAP 166.21 305.7

b 4-(N-Ethylamino)phenol EAP N/A 289.2

g 4-Aminophenol AP N/A 281.9

Benzene BZ 78.11 N/A

Toluene TOL 92.14 N/A

Ethyl benzene EB 106.16 N/A

Xylene DMB 106.17 N/A
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identified, with the retention time less than 55 min. The EV dye and
its related intermediates are denoted as species A–I, a–f, and a–g.
Except for the initial EV dye (peak A), the other peaks initially
increase before subsequent decrease, indicating the formation and
transformation of the intermediates. The N-de-ethylation of the EV
dye has the wavelength position of its major absorption band move
toward the blue region. The oxidative degradation yields 4-
diethylaminophenol (DAP), 4-diethylamino-40-diethyl-aminoben-
zophenone (DDBP), and their N-de-ethylated products. The N-de-
ethylation of the DDBP, produced by cleaving the EV chromophore
ring structure, has the wavelength position of its major absorption
band move toward the blue region.

The absorption spectra of each intermediate in the visible and
ultraviolet spectral region are depicted in Table 1. They were
identified as A–I corresponding to the peaks A–I in Fig. 3(a). The
other intermediates were identified as a–f and a–g, corresponding
to the peaks a–f and a–g in Fig. 3(b) and (c), respectively. The
absorption maximum of the spectral bands shifted from 592.1 nm
(spectrum A) to 544.5 nm (spectrum I), from 379.5 nm (spectrum
a) to 344.2 nm (spectrum f), and from 305.7 nm (peak a) to
281.9 nm (peak g). These shifts of the absorption band were
presumed to result from the formation of series of N-de-ethylated
intermediates. From these results, several groups of intermediates
could be distinguished.

The first group was marked in the chromatogram and illustrated
in Fig. 3(a). The N-de-ethylation of the N,N,N0,N0,N00,N00-hexaethyl-
pararosaniline (EV) dye had the wavelength position of its major
absorption band moving toward the blue region, lmax, A (EV),
592.2 nm; B, N,N-diethyl-N0,N0-diethyl-N00-ethylpararosaniline,
584.9 nm; C, N,N-diethyl-N0,N0-diethylpararosaniline, 583.6 nm; D,
N,N-diethyl- N0-ethyl-N00-ethylpararosaniline, 584.4 nm; E, N,N-
diethyl-N0-ethyl-pararosaniline, 580.5 nm; F, N-ethyl-N0-ethyl-N00-
ethylpararosaniline, 581.5 nm; G, N,N-diethylpararosaniline,
570.2 nm; H, N-ethyl-N0-ethylpararosaniline, 570.5 nm; I, N–ethyl-
pararosaniline, 544.5 nm. The N-de-ethylation of the EV dye caused
the wavelength shifts depicted in Table 1 because of the attack by
one of the active oxygen species on the N,N-diethyl or N-ethyl group.
The examination of Supporting information suggested that the EV
dye was N-de-ethylated in a stepwise manner by N-hydroxyethy-
lated intermediate (i.e., ethyl groups were removed one by one as
confirmed by the gradual peak wavelength shifting toward the blue
region), which was reported [40].

The second group was marked in the chromatogram
and illustrated in Fig. 3(b). Destruction of EV yielded DAP,
DDBP, and their N-de-ethylated products. The N-de-ethylation
of the DDBP species, produced by the cleavage of the EV
chromophore ring structure, had the wavelength position of
its major absorption band move toward the blue region, lmax,
a, 4-(N,N-diethylamino)-40-(N0,N0-diethylamino)benzophenone,
379.5 nm; b, 4-(N,N-diethylamino)-40-(N0-ethylamino)benzophe-
none, 373.1 nm; c, 4-(N-ethylamino)-40-(N0-ethylamino)benzophe-
none, 365.5 nm; d, 4-(N,N-diethylamino)-40-aminobenzophenone,
372.1 nm; e, 4-(N-ethylamino)-40-aminobenzophenone, 357.2 nm;
f, 4,40-bis-aminobenzophenone, 344.2 nm. The proposed interme-
diate (a) was compared with the standard material of 4-(N,N-
diethylamino)-40-(N0,N0-diethylamino)benzophenone. The reten-
tion time and absorption spectra were identical.

The third group was marked in the chromatogram and
illustrated in Fig. 3(c). The N-de-ethylation of the DAP, produced
by the cleavage of the EV chromophore ring structure, had the
wavelength position of its major absorption band move toward
the blue region, lmax, a, 4-(N,N-diethylamino)phenol, 305.7 nm;
b, 4-(N-ethylamino)phenol, 289.2 nm; g, 4-aminophenol,
281.9 nm. The proposed intermediate (g) was compared with
the standard material of 4-aminobenzophenone. The retention
time and absorption spectra were identical.

The photodegraded intermediates were further identified
using the HPLC–ESI mass spectrometric method. The molecular
ion peaks appeared in the acid forms of the intermediates.
Results of HPLC–ESI mass spectra are summarized in Table 1. The
molecular ion peaks appeared the acid forms of the intermediates.
The results of mass spectral analyses confirmed that the
component A, m/z = 456.51, in liquid chromatogram was the EV
dye. The other components were B, m/z = 428.48; C, m/z = 400.46;
D, m/z = 400.52; E, m/z = 372.44; F, m/z = 372.37; G, m/z = 344.41;
H, m/z = 344.41; I, m/z = 316.39; a, m/z = 325.41; b, m/z = 297.38; c,
m/z = 269.29; d, m/z = 269.29; e, m/z = 241.33; f, m/z = 213.17; a,
m/z = 166.21. The results of HPLC chromatograms, UV–visible
spectra, HPLC–ESI and GC–EI mass spectra are summarized in
Table 1.



Fig. 3. HPLC chromatogram of the intermediates at liquid phase with TiO2 1 mg, at pH 6, at 8 h of irradiation, recorded at (a) 580, (b) 350, and (c) 300 nm.
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These species corresponded to the intermediates that
possessed from two to four fewer ethyl groups relative to the
EV dye and were correlative with three pairs of isomeric
molecules. One of these isomers, DMMPR, was formed by the
removal of an ethyl group from two different sides of the EV
molecule, while the other isomer in this pair, DDPR, was
produced by the removal of two ethyl groups from the same
side of the EV structure. In the second pair of isomers, EEEPR
was formed by the removal of an ethyl group from each side of
the EV molecule, and the other, DEPR, was produced by
the removal of both two ethyl groups from the same side of
the EV structure and an ethyl group from the other side of the
EV structure. The third pair of isomers, DPR, was formed by
the removal of two ethyl groups from two different sides of
the EV molecule, while EEPR was produced by the removal of two
ethyl groups from the same side of the EV structure and of an
ethyl group from the rest of two sides of the EV structure.
Both intermediates displayed identical HPLC–ESI-MS character-
istics. Considering that the polarity of DDPR, DEPR, and DPR
species exceeded that of the DEEPR, EEEPR and EEPR inter-
mediates, the latter were expected to be eluted after the DDPR,
DEPR and DPR species. Additionally, to the extent that two N-
ethyl groups were stronger auxochromic moieties than either
N,N-diethyl or amino groups, the maximal absorption of the
DDPR, DEPR and DPR intermediates was anticipated to occur at
the wavelengths shorter than the band position of DEEPR, EEEPR
and EEPR species. The following results and the proposed
mechanism support this argument.

3.5. EV dye photodegradation mechanisms

The relative distribution of all intermediates obtained is
illustrated in Fig. 4. To minimize errors, the relative intensities
were recorded at the maximum absorption wavelength for each
intermediate although the complete quantitative determination of
all photogenerated intermediates was not achieved, owing to
unavailable appropriate molar extinction coefficients of these
intermediates and unavailable reference standards. Nonetheless, it
was clearly observed the changes in the distribution of each
intermediate during the photodegradation of EV.

To understand the active species involving in the photocatalytic
process, hydroxyl radicals (�OH) were detected in the TiO2/UV



Fig. 4. Variation in the relative distribution of the photodegraded products obtained

from the photodegradation of EV as a function of irradiation time. Curves A–I, a–f,

and a–g correspond to the peaks A–I, a–f, and a–g in Fig. 3, respectively.

Fig. 5. Fluorescence spectral changes observed during the illumination of TiO2 in a

1 � 10�3 M aqueous solution of coumarin (excitation at 332 nm). Each fluorescence

spectrum is recorded every 1 h of UV-light irradiation.

Fig. 6. EPR spectra recorded at room temperature after 1 min of illumination of TiO2

in (a) H2O, (c) with EV under an anaerobic condition, (d) with EV under an aerobic

condition, and (b) 10 mg aqueous EV only. Power, 33.2 mW; modulation amplitude,

0.1 mT; light source, 300-W Xe lamp. A capillary tube is filled with a solution of TiO2

(20 mg/mL) and DMPO (60 mM) and placed in a vacuum, 4 mm diameter Suprasil

tube.
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system under an anaerobic (or aerobic) condition by the PL
technique using coumarin as a probe molecule. Coumarin readily
reacted with �OH to produce a highly fluorescent product, 7HC
[41,42]. Fig. 5 shows the changes of the fluorescence spectra from
10�3 M coumarin solution under UV-light irradiation with the
irradiation time in the presence of TiO2 under an anaerobic (or
aerobic) condition. A gradual increase in the fluorescence intensity
at about 456 nm was observed with increasing irradiation time.
The generated fluorescence spectrum had the identical shape and
maximum wavelength with those of the standard 7HC. This
suggested that the fluorescent product 7HC was formed during
TiO2 photo-catalysis due to the specific reaction between �OH and
coumarin. Therefore, �OH was shown to be the active species
during TiO2 photocatalytic reaction under an anaerobic (or
aerobic) condition.

Dimitrijevic et al. [13] proposed that the water, both dissociated
on the surface of TiO2 and in subsequent molecular layers, had a
threefold role of (i) stabilization of charges (preventing electron–
hole recombination), (ii) an electron donor (reaction of water with
photogenerated holes to give �OH radicals), and (iii) an electron
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acceptor (formation of H atoms in a reaction of photogenerated
electrons with protons on the surface, –OH2

+).
EPR spectroscopy has been widely used for examining

paramagnetic species formed upon band-gap excitation of TiO2,
including P25-TiO2 [13,43,44]. In Fig. 6(a), EPR spectra were
recorded following the irradiation of TiO2 suspensions with
pulsed laser illumination at 355 nm. A spectrum displaying
signal was obtained, showing that the �OH radical was indeed
formed under anaerobic conditions. As illustrated in spectrum (b)
of Fig. 6, no signal was obvious in EV aqueous under anaerobic
conditions, whereas �OH radical signals were quite obvious in
irradiated aqueous TiO2 dispersions with EV under anaerobic (or
aerobic) conditions (spectrum (c) and (d) of Fig. 6). These
observations demonstrated that the �OH radical formed during
the photodegradation process under anaerobic (or aerobic)
conditions. However, Dimitrijevic et al. [13] proposed that the
water, both dissociated on the surface of TiO2 and in subsequent
molecular layers, had a threefold role of (i) stabilization of charges
(preventing electron–hole recombination), (ii) an electron donor
(reaction of water with photogenerated holes to give �OH radicals),
and (iii) an electron acceptor (formation of �H atoms in a reaction of
photogenerated electrons with protons on the surface, –OH2

+). For
the above reasons, �OH radicals and �H atoms were subsequently
produced under the anaerobic condition, as shown in Eqs. (1)–(5).

TiO2þ hn ! hþ þ e� (1)

hþ þ H2O ! �OH þ Hþ (2)

hþ þ OH� ! �OH (3)

e� þ H2O ! �H þ �OH (4)

e� þ Hþ ! �H (5)

These cycles continuously occurred when the system was
exposed to UV-light irradiation; after several cycles of photo-
oxidation and -reduction, the degradation of EV dye by the formed
oxidant and reductant species could be expressed by Eqs. (6)–(10):

EV þ �H ! reductiveproducts (6)

EV þ �OH ! oxidativeproducts (7)

EV þ h þ ! EVþ� ! degradedcompounds (8)

EVþ� þ �OH ! degradedcompounds (9)

EVþ� þ �H ! degradedcompounds (10)

Serpone et al. [45] suggested that N-de-ethylation was
caused by an attack of active oxygen species on N-ethyl groups
under aerobic conditions. Like UV irradiation with aerobic
conditions, most �OH was generated directly from the reaction
between the holes and surface-adsorbed H2O or OH�, the only
pathway for the formation of reductive species under UV-light
irradiation was through the reduction of H2O or H+ by the
conduction band electron. De-ethylation of the EV dye
occurred mostly through the attack by �OH species, which
were a perfect nucleophilic reagent, on the N-ethyl portion of
EV. Additionally, considering that the N,N-diethyl group in DDPR,
DEPR and DPR was bulkier than the N-ethyl group in DEEPR, EEEPR
and EEPR molecules, the nucleophilic attack by �OH on the N-ethyl
group should be favored at the expense of the N,N-diethyl group. In
accord with this notion, the HPLC results showed that the DDPR,
DEPR, and DPR intermediates reached the maximal concentration
before the DEEPR, EEEPR, and EEPR intermediates did. However,
considering that the attack probability of the two N,N-diethyl
groups in DDEPR being higher than the one N-ethyl group in
DDEPR molecules, the nucleophilic attack by �OH on the N,N-
diethyl group should be favored at the N-ethyl group. The N-di-de-
ethylated intermediates (DEEPR and DDPR) were clearly observed
(Fig. 4, curves C and D) that DEEPR and DDPR reached their
maximum concentration at the same time after an 8-h irradiation
period because of the two competitive factors mentioned above.
The N-tri-de-ethylated intermediates (EEEPR and DEPR) were
clearly observed (Fig. 4, curves E and F) that EEEPR reached its
maximum concentration after an 8-h irradiation period, while
DEPR reached its maximum concentrations after 8-h because �OH
attacked the N-ethyl group of DEEPR and the N,N-diethyl group of
DDPR. The N-tetra-de-ethylated intermediates (EEPR and DPR)
were clearly observed (Fig. 4, curves G and H) that EEPR reached its
maximum concentration after a 24-h irradiation period because
�OH attacked the N-ethyl group of EEEPR and the N,N-diethyl group
of DEPR, while DPR reached its maximum concentrations after a
24-h irradiation period because �OH attacked the N-ethyl group of
DEPR. In the N-penta-de-ethylated intermediates (EPR), curve I in
Fig. 4, EPR reached its maximum concentration after an 28-h
irradiation period because �OH attacked the N-ethyl group of EEPR
and the N,N-diethyl group of DPR. The successive appearance of
the maximal quantity of each intermediate indicated that the N-
de-ethylation of EV was a stepwise photochemical process
that occurred by a de-hydroxylation of N-hydroxyethylated
intermediates.

The oxidative degradation of EV dye occurred mostly through
the attack by �OH species on the central carbon portion of EV
and produced DDBP and DAP under acidic aqueous conditions.
The evolution of the concentration of the initial dye and identified
intermediates was followed as a function of irradiation time. The
result is displayed in Fig. 4. The oxidative degradation inter-
mediates DDBP and DAP were clearly observed (Fig. 4, curves a and
a) to reach their maximum concentrations at the same time after
an 8-h irradiation period. The N-mono-de-ethylated intermediates
DEBP and EAP were clearly observed (Fig. 4, curves b and b) to
reach their maximum concentrations at the same time after a 16-h
irradiation period. The N-di-de-ethylated intermediates EEBP and
AP were clearly observed (Fig. 4, curves c, d and g) to reach their
maximum concentrations after a 24-h irradiation period while DBP
reached its after 4 h because �OH attacked the N-ethyl group of
DEBP and the N,N-diethyl group of DEBP. The other N-ethylated
intermediates, EBP and BP, were clearly observed (Fig. 4, curves e
and f) to reach their maximum concentrations after 40-h and 48-h
irradiation periods, respectively. The concentrations of the other
hydroxylations of N-ethylated intermediates might be under the
detectable limit.

According to earlier reports [45,46], most oxidative N-de-
alkylation processes were preceded by the formation of a nitrogen-
centered radical while the destruction of dye chromophore
structures was preceded by the generation of a carbon-centered
radical [46–49]. When the degradation of EV was consistent,
it would occur via two different photooxidation pathways
(destruction of the chromophore structure and N-de-ethylation)
due to the formation of different radicals (either a carbon-centered
or nitrogen-centered radical). It was no doubt that the electron
injection from the dye to the conduction band of TiO2 yielded
the dye cation radical, a process determined by the nature of the
HOMO orbital of the excited dye, dye* [50]. After this step, the
cation radical, Dye�+, could undergo hydrolysis and/or deprotona-
tion pathways of the dye cation radicals, which in turn were
determined by different adsorption modes of EV on the TiO2

particle surface.
On the basis of all experimental results above, the dye molecule

in the EV/TiO2 system was adsorbed through the positively
charged diethylamine function. Following the electron injection
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from the TiO2 particle surface to the adsorbed dye through
the positively charged diethylamine function and subsequence
hydrolysis (or deprotonation), a nitrogen-centered radical, which
was subsequently attacked by molecular oxygen to lead ultimately
to de-ethylation, was yielded. The mono-de-ethylated dye, DDEPR,
could also be adsorbed on the TiO2 particle surface and implicated
in other similar events (electron injection, hydrolysis or deproto-
nation, and oxygen attack) to yield a bi-de-ethylated dye
derivative, DDPR and DEEPR. The N-de-ethylation process de-
scribed above continued until the completely N-de-ethylated dye,
PR, was formed.

The EV dye by photocatalysis has been extensively studied. Two
possible mechanisms were suggested by previous studies (Fig. 7A)
[36]. The first was a true photocatalysis process where the
semiconductor was excited by light irradiation with the energy
greater than its band gap energy, which caused the formation of
the hole–electron pair in the semiconductor. Thus, redox reactions
could provide the formation of hydroxyl radicals and superoxide
ions, which were non-selective strong oxidizing agents reacting
directly with the dye molecule to cause its degradation and
subsequent mineralization under the aerobic condition. The EV
molecule might also interact with the photogenerated holes in the
valence band of the semiconductor (VB). This phenomenon
provided a direct chemical reaction between the photocatalyst
and the dye.

Under anaerobic conditions, a possible mechanism (Fig. 7B) was
used in a photocatalytic reduction process. The conduction band
delocalized the electrons through a series of reduction reactions. In
this case, H2O or H+ absorbed the electron of conduction band so
that it reached an unstable state (H� atom) and H� atom interacts
with EV dye and then the whole conjugated chromophore
structure was cloven by photocatalytic reduction when it returned
to its stable energy state. During the photocatalytic process under
anaerobic conditions, three competition pathways could occur
simultaneously. The schemes of the mechanisms are shown in
Fig. 8 with the possible reactions.

3.5.1. Photocatalytic reduction and reforming

In the photocatalytic oxidation reaction, hydroxyl radicals
(�OH), holes (h+), and superoxide anion radicals (O2

��) were
commonly suggested as the primary oxidizing species under
aerobic conditions [36,51,52]. However, in anaerobic photocata-
lytic reaction conditions, �OHs were also formed on the TiO2

surface, by the reaction of h+ with OH�; however, O2
�� would not

be generated from the reduction of O2 by the photogenerated
electrons (e�) simultaneously. Hydroxyl radicals (�OH) and holes
(h+) became the main oxidants to attack the EV dye substrate. H�

atoms played the major reducing species to cleave the EV
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dye structure and its decomposed intermediates to produce BTEX.
The photocatalytic reduction and reforming mechanism of EV are
proposed in Fig. 9. De-aminylation of the EV dye occurred mostly
through the attack by �H atom on the N,N0-ethylamino portion of
EV. In accord with this notion, the results showed that the
triphenylmethane intermediates formed before the BTEX products
did. The destruction of dye chromophore structures of the EV dye
occurred mostly through the attack by �H species on the central
carbon portion of EV and produced 4-(N,N-diethylamino)-40-
(N0,N0-diethylamino)methane and N,N-diethylaminobenzene un-
der anaerobic conditions. Then, de-aminylation of the 4-(N,N-
diethylamino)-40-(N0,N0-diethylamino)methane and N,N-diethyla-
minobenzene occurred mostly through the attack by �H atom on
the N,N0-ethylamino portion. Benzene and diphenylmethane
would produce BTEX by photocatalytic reforming [20,22,27].

In Fig. 10, the dye molecule in the EV/TiO2 system was adsorbed
through a conjugated structure cleavage of the EV chromophore
structure. Following �OH radical attack, the conjugated structure
yielded a carbon-centered radical, which was subsequently
attacked by molecular oxygen to lead ultimately to DDBP and
DAP. The same process happened in the N-de-ethylated dye to
produce the N-de-ethylated DDBP and DAP. The DDBP could also
be adsorbed on the TiO2 particle surface and be implicated in other
similar events (�OH radical attraction and attack, hydrolysis or
deprotonation, and/or oxygen attack) to yield a mono-N-de-
ethylated derivative, DEBP. Moreover, the same process happened
in DAP to produce EAP. The N-de-ethylation process as described
above continued until the formation of the completely N-de-
ethylated DDBP, BP, and N-de-ethylated DAP, AP. All above N-de-
ethylation processes produced a series of N-de-hydroxyethylated
intermediates by the hydroxylation on the N-ethyl group. All the
intermediates were further degraded to produce N,N-diethylami-
nobenzene, N-ethylaminobenzene, amino-benzene, acetamide, 2-
propenoic acid, and acetic acid, which were subsequently
mineralized to lead to CO3

2– and NO3
– [36,53]. On the basis of

all above experimental results, the pathway of photodegradation
was tentatively proposed. PCR, PR, and PCO of EV took place in the
presence of TiO2 particles.

3.5.2. Oxidative degradation of EV

According to earlier reports [36,51–54], most N-de-alkylation
processes were preceded by the formation of a nitrogen-centered
radical, while the destruction of dye chromophore structures was
preceded by the generation of a carbon-centered radical. Consis-
tent with this, the degradation of EV had to occur via two different
photodegradation pathways (destruction of the chromophore
structure and N-de-ethylation) due to the formation of different
radicals (either a carbon-centered or nitrogen-centered radical). It
was no doubt that the �OH attack on the dye yielded a dye cationic
radical. After this step, the cationic radical Dye�+ could undergo
hydrolysis and/or follow various deprotonation pathways, which
in turn were determined by different adsorption modes of EV on
the TiO2 particles surface.

On the basis of the above experimental results, the pathway
of photodegradation was tentatively proposed, Fig. 10, in which the
dye molecule in the EV/TiO2 system was adsorbed through the
positively charged diethylamine function. Following one �OH radical
attracting a hydrogen atom from ethyl group of diethylamine and
another �OH radical attacking the diethylamine radical and forming
hydroxyethylated intermediates, the subsequent hydrolysis (or
deprotonation) of intermediates yielded de-hydroxyethylated
intermediates, which were subsequently attacked by �OH radicals
to lead ultimately to N-de-ethylation. The mono-de-ethylated dye
derivative, DDMPR, could also be adsorbed on the TiO2 particle
surface and implicated in other similar events (�OH radicals
attraction and attack, hydrolysis or deprotonation) to yield a bi-
de-ethylated dye derivatives, DDPR and DMMPR. The N-de-
ethylation process as described above continued until the formation
of the completely de-ethylated dye, PR.

The results not only provide evidences for the study of
photocatalytic reduction with TiO2, but also enhance our further
understanding on the mechanism of photocatalytic degradation
under anaerobic conditions. Based on these data, the degraded
mechanism of EV is discussed and proposed. Both photocatalytic
reduction and oxidation take place in the presence of TiO2

particles. A novel photodegradation mechanism should be
proposed via three competition pathways, including (i) cleavage
of the whole conjugated chromophore structure by photocatalytic
reduction, (ii) cleavage of the whole conjugated chromophore
structure by photocatalytic oxidation, and (iii) N-de-alkylation of
the chromophore skeleton.
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